
/

-
\

Providing an Empirical Basis for Optimizing the Verification and
Testing Phases of Software Development

Lionel C. Briand, Victor R. Basili and Christopher J. Hetmanski

Institute for Advanced Computer Studies,

Computer Science Department,
University of Maryland, College Park, MD, 20742

To be published in the proceedings of the IEEE International Symposium on Software

Reliability Engineering, North-Carolina, USA, October 1992.

Abstract:

Applying equal testing and verification effort to all parts
of a software system is not very efficient, especially when
resources are limited and scheduling is tight. Therefore,
one needs to be able to differentiate low I high fault

density components so that testing I ver_ication effort can
be concentrated where needed. Such a strategy is expected
to detect more faults and thus improve the resulting

reliability of the overall system. This'paper presents an
alternative approach for constructing such models that is

intended to fulfill specific software engineering needs, (i.e.
dealing with partial I incomplete information and creating
models that are easy to interpreO. Our approach to
classification is to (I) measure the software system to be
considered and (2) build multivariate stochastic models for

prediction. We present experimental results obtained by
classifying FORTRAN components developed at the
NASA Goddard Space Flight Center into two fault density
classes: low and high. Also, we evaluate the accuracy of
the model and the insights it provides into the software

process.

Key words: fault-prone software components, stochastic
modeling, machine learning.

1. Introduction

In this paper, we address the issue of identifying high fault
density software components via empirical stochastic
modeling. If we can identify components thatproduce a
great deal of faults relative to their size, then we can
concentrate the verification and testing processes on them

and thereby optimize the resulting reliability of the
developed software system. However, building such

Research this study was supported in part by NASA grent NSG
5123 and by AFOSR 90-0031

stochastic models is a difficult task. The data collected is

often incomplete and/or heterogeneous and presents many
problems with respect to model construction (e.g.
interdependexcies, outliers, complex relationships). In this

paper, we present an alternative modefing process based on
both statistics and machine learning principles [M83]. We

show bow the process facilitates the identification of high
fault density components based on metrics obtainable at
the end of the coding phase.

The modeling approach presented in this paper, called
Optimized Set Reduction (OSR), has been developed at the
University of Maryland ['BBT91] in the framework of the
TAME project [BR88]. It is derived from the ID3 model
[Q79, Q86, BR84] which was originally developed for

automatic generation of classification/decision trees. As
discussed in [CE87,BBT91], the use of ID3 has several

inherent problems and leaves room for improvement with
respect to many data analysis and modeling issues (i.e.
small data sets, missing data values, noisy data,
heteroscedasticity). Our motivation for developing OSR
and a tool to support it was to design a data analysis
technique matching, to the extent possible, the specific
needs of building multivariate empirical models for
software engineering. The issue of using OSR for
predicting on a continuous range is addressed in [BBT91].
In this paper, we discuss using OSR to classify software
components into two fault density classes (low, high).

In Section 2, we present the basic principles of the OSR
algorithm and formally define the approach. This
formalism is intended to give an unambiguous
presentation of some of the features of OSR rather than a
complete definition of it. Section 3 discusses the issue of
building models based on partial information (i.e. missing
data for technical or cost reasons). Section 4 presents a

process called "pattern merging" whose goal is to facilitate
interpretation and learning based on the generated models.
Sections 5 and 6 present some of the results obtained via

10005788L
PRECEDING P.OiGE F_OT FiLI_ ._.D

Pattern:] I Distribution : I

Probability

CPLX=Nominal I I I
RELY = Low _ HF-
DATA = High

am..._
v

Productlvit

Figure 1: Example of a Pattern and its Associated Probability Distribution

experimentation using OSR. Based on these results, we
can determine the accuracy of the model. Also, we can
compare OSR's outputs with those of a logistic regression
based model, which is one of the most standard statistical

techniques for classification [I-R,89, AG90]. Finally.
Section 7 underlines the major conclusions and directions
for futme research.

2. Optimized Set Reduction

2.1 Basic Principles

Let us assume we want to assess a particular characteristic
of an object (e.g. the fault density of a component). We
will refer to this characteristic as the Dependent Variable
(Y). The object is represented by a set of explanatory
variables which describe the software component (called
Xs). These variables can be either discrete or continuous.
For example, a software component may be described by
two Xs, its cyclomadc complexity (continuous) and the
type of its function (discrete). Also, assume we have a
historical data set containing a set of pattern vectors that
contain the previously cited Xs plus an associated actual Y
value. We will call the Xs portion of the pattern vector a
measurement vector.

The goal of the OSR algorithm is to determine which
subsets of experiences (i.e. pattern vectors) from the
historical data set provide the best characterizations of the
object to be assessed. In other words, we try to determine
which subsets of the data set yield the "best" probabifity
distributions on the Y range. A good probability
distribution is a probability distribution concentrating a
large number of pattern vectors in either a small part of
the range (Y is continuous) or in a small number of
dependent variable categories (Y is discrete). One of the
commonly used probability distribution evaluation

functions is the information theory entropy (H).
Alternative probability distribution evaluation functions
ate discussed in [Q86, SP88, M89]. Each of the subsets of
the historical data set yielding "optimal" distributions,
referred to as optimal subsets, are characterized by a set of
conditions (referred to as predicates) which are Irue for all
pattern vectors in that subset. Each set of predicates
characterizing a subset is called a pattern. Figure 1 shows
an example of a pattern and its associated probability

distribution in the data set. The pattern is composed of
three wedicates where the dependent variable to be assessed
is "development productivity'. Figure 1 shows that if
these predicates (i.e. ComPLeXity = Nominal,
RELiabilitY=Low, DATA base size = High) are true for a
project, then its productivity is most likely to be in the
second productivity class.

2.2 Formal Definition of the OSR Process

We want to identify optimal subsets in the historical data
set.We can formalize the process using set theory and
predicate calculus by defining the function OpL Let us
assume we have a set of m explanatory variables

{Xl.X 2 Xm} and a corresponding set of explanatory

variable value domains {EV i.EV2.....EVm}.Let us def'me

the measurement vector domain to be MV = x EV,.
ta II -m

The dependent variable value domain (DV) may be seenas
a set of classes which can be either intervals or categories.
Therefore, the value domain of the pattern vectors in the

data set can be represented as PV = DV x MV. Let

PVS be a set of pauem vectors representing the historical

data set (PVS _ PV). A predicate is a variable value pair
(i.e. an Xi and its corresponding explanatory variable

value).

100_71_L

4-38

• Definition 1: Let PSS be a subset of PVS and let the
measurement vector mv describe the object to assessed.

VALID(PSS, my) is true if my is composed by at least

one predicate which is true for all the pattern vectors in the
set PSS.

PSS _ PVS ^ mv G MV A 3i_(1..m)

such that Vpv _ PSS (my(i) = pv(i))
=) VALI_ PSS, my)

• Def'mition 2: TC(PSS, PVS) is flue if the two data sets
PSS and PVS do not show a statistically significant
difference in disu-ibution on the DV range. This is may be
evaluated by performing statistical inference tests for
comparing distributions. We currently use a binomial test
for proportions since it does not have any applicable
restraints (e.g. minimum expected frequencies like the
Chi-squared test of independence)[CA88]. For each
dependent variable class, the probability that proportions
in PSS and PVS differ by chance is calculated. If for at
least one of the classes, this probability is below a level

of significance TC defmed by the user, then we reject the
hypothesis that the two disu'ibutions are identical. TC
stands for Termination Criterion because the OSR process
will be terminated ff the condition defined by TC is flue.

• Definition 3: EMIN(PSS1, PVS) is flue ffPSS1 is one

of the subsets of PVS yielding a minimal normalized

entropy H upon all _tatisticallv significant subsets of

pattern vectors (e.g. a one vector subset has a minimal
entropy but it is not a statistically significant subset and
therefore is not relevant here).

(Pss1_ PVS ^ -, _0,ssl.Pvs))

^ (VPSS 2 _ PVS (--, TC(PSS2.PVS) ^ H(PSS 1) < H(PSS-2)))

m EMIN(PSSI)

where

H(PSS) = _- p(PSS,d)log,,,_p(PSS,d)
a(EDV

where

p(PSS, d) is the a priori probability that a vector
which is an element of PSS has a dependent

variable value belonging to the dependent variable
class d

• Definition 4: Opt(PVS, my) is a function yielding a set
of optimal pattern vector subsets.

Opt(PVS, my) = {PSS _ PVS I VALID(PSS, my)

^ EMIN(PSS, PVS) }

However, the function Opt as defined cannot be used as an
algorithm to extract the optimal subsets. The most
importantreasonsare:

•The number of possible predicate combinations
makes the search execution time prohibitive.
•We want the patterns to contain a minimal set of

predicates, i.e., we want all the predicates in the
pattern to have a significant impact on the resulting
pattern entropy.
•We loose some information about the relative impact
of the various predicates in the entropy reduction

process.
•The contexts in which the various predicates appear
relevant are undetermined.

Therefore, we implement a greedy algorithm using the
function Opt which addresses the issues mentioned above.
The Optimized Set Reduction algorithm can be roughly
described by a three step re.cursive algorithm.

• Step 1: If the dependent variable is continuous, its range
is divided into a set of classes according to two main

factors: the necessary model accuracy and the size of the
data set. Then, the ranges / categories of the explanatory
variables are divided / clustered into classes (e.g. Classil

... Classij for the explanatory variable Xi) based on
meaningful class creation techniques. For example, a
Complexity range can be divided in three classes: low,
average, high. Numerous techniques can be used in order
to create meaningful classes (e.g. cluster analysis) [DG84].
However, this issue will not be addressed in this paper.

• Step 2: Select all the pattern vectors in the data set

having a value for the explanatory variable X i belonging

to Classik, where the X i for the object to be assessed

belongs to the same class, and where the subset

characterized by the predicate X i ¢ Classy, yields the

minimum _tatistically sit, nificant value for H. However,

several subsets (characterized by different predicates),
yielding "similar" minimal entropies (i.e. the similarity
criterion has to be defined by the user of the algorithm)
can be extracted at once. Let us call PSSi the extracted

subsets of pattern vectors.

• Step 3: Step 2 is repeated in a recursive manner on each
subset PSSi and each successive subset until the user
defined termination criteria ('IL-')is reached.

This OSR algorithm can be formally specified as a two
parameter re.cursive function where PVS is the historical
data set and mv the vector describing the object to be
assessed:

1O0057881.

4-39

Historical
data set (PVS)

SubRtl Sulmet2 Submt3

Subsetl.1 Subsetl.2 Subset2.1 Subset2.2

Extracted subset \ "Subset of' relationship

Figure 2: Example of OSR Hierarchy

OSR(PVS, my) = ffOpt(PVS, my) v_ 0

then

U(OSR(PSS, mv))
pss_opt(ws, mo

else

{PVS}

The whole subset extraction process can be rept_,lted

a hierarchy (see Figure 2). Note that this representation
should not be confused with a partition tree since: (1) the
extracted subsets are not exclusive and (2) a subset can

have several parent subsets. Each path of the hierarchy
represents a generated pattern (e.g. Figure 2:

X l c Class,. AND Xj e Classx, defines Subsetl.1) which

is relevant to the particular prediction to be performed. As
shown in Figure 2, two patterns may yield exactly the
same subset (e.g. Subset 2.2). The extracted subsets (i.e.
leaves of the hierarchy) which form various probability
distributions across the dependent variable range may show
different trends. For each leaf probability distribution, if
the dependent variable is discrete, the dependent variable
class containing the largest number of pattern vectors may
be selected as the most likely class for the new object

(characterized by mv) to lie in. Using an alternative
Bayesian approach, a loss I risk function could be defined
by the user [BBT91]. In this case, the dependent variable
class yielding the minimum expected loss is selected.
Each pattern prediction (i.e. hierarchy leaf) is used to make
a final global prediction based on predefmed decision rules.

In order to perform such decisions effectively, we need to
be able to evaluate the accuracy of the identified patterns.
This issue is treated in Section 3.

3. Handling Partial Information with OSR

3.1 Definition of the Problem

As mentioned above, analyzing complex data sets and
variable relationships is a very difficult task for several

reasons (i.e. incomplete / heterogeneous / small data sets,
missing data, complex interdependencies). The most
common of these is the problem of partial information.
Our lack of understanding of software processes (due to our
lack of experience and the wide variability from one

development environment to another) makes experience
difficult to reuse. Also, because of cost and schedule
related constraints, necessary data cannot always be
collected. All of these issues contribute to the

incompleteness of our data.

100067_L

4-40

Missing information reduces our ability to predict and
understand. However, we have to establish whether or not

the lack of a piece of data is an obstacle to prediction. This
means that we need a model that both generates predictions

and provides some insight into the reliability of each
individual prediction. A goodness indication at the model
level such as the coefficient of determination in least-

squares regression analysis is not sufficient since it fails to
yield an individual reliability measure for each prediction.

For example, let us say we wish to predict project

productivity _.ording to collected physical feaun'es of the
system and predefmed quality requirements. Suppose we
do not have any information about the team experience
related to the programming environment and the
application domain. This information might be somewhat
irrelevant, i.e. if the structural complexity of the software

and the required system reliability are low, then the
variance of the prediction is small. However, if high

reliability on a complex software system is expected, then
people rated as having low experience are likely to
generate schedule and/or budget slippages. This will make
any prediction based exclusively on other criteria
meaningless. Therefore, we need a modeling approach
that can answer the question: Do I have enough
information to make a reliable prediction?

3.2 Solutions to Partial Information within
the OSR Framework

For each measurement vector in the historical data set we
run the OSR algorithm using as an initial data set (i.e.

set at the top of the OSR hierarchy) the historical data set
minus the measurement vector to be predicted. It is
removed fi'om the data set in order to avoid any bias in the
results. We therefore extract specific patterns for each
measurement vector and form a set of patterns representing
the trends observable on this particular data seL

This resulting set of patterns, or Specific Pattern Set
(SPS) may be seen as a model of the historical data set.
Many of these patterns will be the same or "similar" and
will therefore form classes of patterns. For each of these
classes, based on the SPS, we can evaluate statistics such

as pattern reliability (i.e. percentage of correct
classification) or pattern significance (i.e. the probability
that the reliability is greater than or equal to the one
observed by chance) by comparing the predicted DV values
with the actual ones. These statistics can then be used to

evaluate predictions as explained in the subsequent
paragraphs. The process of generating a SPS will be
referred as to Development Environment Analysis (DEA).

In the text below, we assume the produced patterns have
the following conjunctive normal form:

Predicatel AND Predicate2 AND ... AND PredicateN

However, a pattern is not only a logical proposition. The
order in which the predicates appear in the hierarchy

(Figure 2) is relevant from an understanding perspective.
A predicate is relevant only when the conditions defined by
its preceding / parent predicates in the hierarchy (i.e.
referred as to the context of a predicate in a particular

pattern) are true. For example, Predicate 1 significantly
reduces entropy by itself. Also, in the context of
Predicatel, Predicate2 significantly reduces entropy.
However, based on this pauern, there is no evidence that

Predicate2 significantly reduces entropy by itself.

The notion of pattern reliability and significance, as
mentioned above, can be more formally defined as follows:

the reliability of a pattern with respect to a particular
dependent variable class is the probability that the pattern
will predict the correct value for the dependent variable.

Let DVclass i be dependent variable class i. Let T equal the

number of generated patterns (Pj) that predict DVclassi.
Let C equal the number of patterns which correctly predict
DVclassi (based on the actual DV value of the pattern

vector for which the pattern was produced during DEA).

Then we define the reliability of Pj with respect to the
dependent variable class DVclassi as:

R [DVclassi ; Pj]= C /T

The probability that a pattern appears T times yielding a
particular classification DVclassi C times correctly ILX
chance (P(C,T,p)) can be expressed by the binomial

distribution:

T ! c, 1 ,T-c
P(C,T,P)= C !_'_:c)!P t-P)

where, p = p(DVclassi), i.e. the a priori probability that
the value of the dependent variable is in DVclass i.

If the pattern reliability R is C_luai to 1.0. then the
binomial equation can be simplified and the level of

significance is simply pT. If R is below one, then the

pattern significance S can be calculated by using the
following formula:

S=_-Cp(c+i;T;p)

Since we are able to differentiate significant, reliable

patterns from the n6n-significant and/or unreliable ones,
we can assess the reliability of the prediction when we

make it. A prediction based on a reliable pattern with a
sufficient level of significance (e.g. S < 0.05) is

10006788L

4.41

believable, where., one based on a reliable pattern with a

poor level of significance is not A poor reliability means
that a pattern is not robust to "noise" (i.e. the dependent
variable variations created by unknown or non-measm_

explanatory variables). A poor significance may mean
that the pattern is a result of noise or more complex

phenomena which are beyond the scope of this paper.

4. A Process for Merging Patterns

Pauems are useful both for predicting variables of interest

(e.g. fault density) and providing understandable /
interpretable models. However, interpreting the patterns
generated by a DEA would force the user to deal with
useless complexity. Many of these patterns are similar and
should not be differentiated. This can prevent the user from

getting a clear picture of the model trends. Therefore, the
patterns generated by the OSR process need to be grouped
in order to make them more easily understandable and

interpretable. This can be done using a
(described below) where the user fLXes

the desired level of "similarity" between pattern by

assigning values to a small set of parameters.

Let us define two patterns PT1 and Fr2:

PTI: Xj ¢ C]&qSjy AND X i ¢ C]assix

l:r['2: Xj _ Classjy AND X k ¢ Class_

Suppose in the context where Xj e Class_, the pattern

vector set for which X i ¢ Class,. happens to show a

strong association with the one for which Xt ¢ Class w

This implies that these predicates capture basically the
same phenomenon. The strength of the association can be
assessed by using normalized Chi-squared based statistic
such as Pearson's Phi [CA88]. A Chi-squared test can be

performed in order to assess the statistical level of
significance of such an association. The two pauems will
be merged into one signifying that the selection of one
predicate, or the other, during the OSR process, occurs by
random. This is a result of slight differences between the

two predicates and therefore distinguishing between them
does not help to understand the object of study. This

phenomenon is mainly due to complex interdependencies
between Xs that are often underlying the software

engineering data sets.

The notion of a "slight difference" is rather subjective and
therefore must be defined by the user. Thus, he / she

declares either a Phi value (actually Phi 2 which better

represents in this case the degree of association [CAP88])
or a level of significance which represents the minimal
degee of association necessary to assume two predicates as
similar. This process of merging patterns based on the
similar predicates principle yields the resulting pattern
PT{ 1,2} which contains the composite predicate

(X i c CiaSsik ORX k ¢ Classla), implicitly meaning

that its two component predicates are interchangeable in
this contexL

PT{1,2): Xj _ Class w AND (X, e Class,. OR X k e Classy)

Automated merging of similar patterns can be performed if
the user provides either a Phi value or a level of
significance that would correspond to an unambiguous
defmition of pattern similarity.

In a similar manner, we can define a second merging

principle. Let us suppose we have the following patterns:

PT]: Xj ¢ Class n AND X i _ Class,.

PT2: Xj ¢ Classy, AND X i _ Classt,

Let us assume that Class,. is a neighbor class of Class,.

on the X i range. In this particular case, if the two

patterns characterize subsets with no statistically
signifw, ant difference in distribution on the DV range, then
they can be merged. This is because the variation from one
class to the other seems to have a non-relevant effect on

the dependent variable in the context where Xj e Class,.

Therefore, in order to assess if merging is possible, the
wobability that differences between dis_butions are due to
random is calculated. For each dependent variable class, the

proportions of pattern vectors are compared between the
two distributions by calculating the probability that

difference in proportion is due to random. If for all
dependent variable classes, the resulting minimum
probability is above a user-defined critical probability
value, we accept the hypothesis that there is no significant
difference between the two distributious. In the current
tool, this is calculated through a binomial test in order
avoid the assumptions related to other more

computationally effective tests (e.g. Chi-squared test of
_4gnc_ar_) [CAPSS).

Both of the merging principles defined above can be used
simultaneously in order to obtain more general patterns.
However, the merging process using both of them must
be carefully defined. In a tool, such mechanisms can be
completely automated. The user would have to define
some thresholds / criteria allowing the algorithm to declare
two predicates similar (i.e., a level of significance, Phi
value) and/or two classes similar (i.e., critical probability
value). Before the merging process starts, the tool will
calculate the matrix containing all the phi values and
levels of significance between all predicates. Then, the
merging process for the fast position predicates starts: it
is a several pass process where only two predicates can be
merged at a time. First, predicates are merged according to
the similar class principle. Then, the pairs of predicates

10006788L

4-42

showing the strongest significant associations are merged
(similar predicate principle). During the next passes,
predicates can be merged to composite predicates and
composite predicates to composite predicates. The process
stops when no merging is possible according to the
criteria defined by the user. Once finished, association
matrices are calculated within the contexts defined by each

unique first position predicate (composite or not) resulting
from the f_st pass. Then, the merging process for second
position predicates begins within each context following
the rules defined above. This is repeated successively on
increasing predicate positions until a predefined (i.e. by the
user) maximum merging level is reached. Thus, the user
defines the number of predicate positions he / she wants to
look at and therefore set the maximum merging depth of
the algorithm.

5. Experiment Design

Our goal in this article is to describe a technique to
distinguish between low and high risk components.

The notion of risk has multiple dimensions. We focus
here on the identification of low/high fault density
components. If we can distinguish between these two
types of components, then we can concentrate on the high
fault density ones during the verification and testing
process. Moreover, if we can build this kind of model for
each kind of fault, we can apply fault specific testing
techniques to localize and correct faults. Basili and Selby
showed in [BS87] that the effectiveness of three of the
most well known testing approaches could vary
significantly according to the type of fault considered.
Althou_ more experiments are needed to l_amr understand
the issue, this study supports the idea of building different
models for each type of faulL

The collected data set is based on fifteen FORTRAN

projects which were developed at the NASA Goddard Space
Hight Center in the early eighties. On all of these project,
static measures at the component level were collected
using a static code analyzer. Fault report forms were fdled
out during the test phases of the development process.
Faults were identified, classified according to a predefined
taxonomy and localized in the system.

Our definition of fault density is the ratio of the number of
faults over the number of executable statements. In this

experiment we will look, as a first step. to faults related to
incorrect data swacmre readings or writings (called "data
value" faults in the NASA Software Engineering
Laboratory). This type of fault represents about 50 percent
of the total number of faults collected on the projects
studied in this experiment.

6. Experimental Results

6.1 Prediction Results

We used the OSR technique to build classification models
that were intended to provide an answer to the question: Is
this component likely to be in the lowest / highest
quartiles on the "data value" fault density range? This was
done by performing a DEA on the data set which contained

399 pattern vectors. Each pattern vector was comprised of
a list of static measures which describe a software

component (i.e. the measurement vector), plus, the fault
density of that component. Thereby, we were able to
calculate an average classification correctness (i.e.
percentage of components correctly classified) of the OSR
model. Also, we try to demonstrate through examples
that reliable patterns can be differentiated from misleading
patterns.

For the sake of simplicity, we will look only at the two
first predicates (the most relevant according to the OSR
selection mechanism) of each of the generated patterns. R,
O and S are respectively the Reliability, number of
Occurrence (the number of times a pattern appeared), and
the Significance of the pattern. The explanatory variable
ranges were divided into quartiles. This method is the
simplest technique for class creation but most likely the
least effective. The class creation process is one of the
issues that remains to be investigated (See Conclusion).
OSR suggested that low and high fault density
components were partly characterized by the following
significant (< 0.05 level of significance) and non-
significant pauems:

Low Fault Density Components

Assume that Fq, Sq, Tq and Lq represent respectively the
First quartile, Second quartile and so forth, on the
explanatory variable ranges.

• Examples of Highly-Significant Reliable Patterns:
PTI: # struts ¢ l.,q AND # calls _ Fq,

R = 1.0, O = 18, S = 0.000

FI2: # sunts ¢ Lq AND # calls ¢ Sq,
R = 1.0, O = 17, S = 0.000

PT3: # struts _ Lq AND # format/strut _ Fq,
R = 1.0, O = 10, S = 0.000

PT4: # struts E Lq AND # i/o strut / strut E Fq,
R = 1.0, O = 15, S = 0.000

PTS: # stmts E Lq AND # assign/sum E Fq.
R = 1.0, O = 8, S = 0.004

PT6: # struts E Lq AND # decis_node/stmt E Fq,
R= 1.0, Of ll.S =0.005

PTT: # struts E Lq AND #funct/stmt E Tq
R = 1.0, O = 24, S = 0.000

PTS: # decision nodes E Lq AND # calls E Fq,
R = 1.0, O = 14, S = 0.000

PT9: # decision nodes _ Lq AND # calls ¢ Sq,
R = 1.0, O = 15, S = 0.000

PTIO: # decision nodes _ Lq AND # i/o sunts _ Fq,

100057_L

4-43

R = 1.0, O = II, S = 0.001

PTi 1: # operators/sunte RI AND # calls e Fq,
R = 1.0, O = 9, S = 0.002

PTI2: # operators/stmt e Fq AND # format/strut e Fq,
R = 1.0, O = 6, S = 0.016

PTI3: # operawrs/stmt • Fq AND # functions • Lq,
R = 1.0, O = 8, S = 0.004

• Examples of Non-Significant Reliable pam_'ns

PTI4: # stmts • Tq AND # format/strut • Fq,
R= 1.0, O=2, S=0.25

PTI5: # sunts • Tq AND # i/o sUnt/stmt • Fq,
R= 1.0, O=2, S=0.25

PTI6: # struts • Tq AND # i/o stmts • Fq,
R = 1.0, O = 2, S = 0=25

PTI7: # strnts • Tq AND # i/o su'nts • Sq,
R= 1.0, O=4, S =0.0625

PTI8: # operators/strut • Fq AND # funct/stmt • Lq,
R= 1.0, O=4, S =0.0625

• Example of a Non-Significant Non-Reliable Pattern

PTI9: # struts• Tq AND # functions• Tq,
R = 0.0,O= I,S = 1.000

High Fault Density Components

• Examples of Significant Reliable patterns

PTS: # struts •
R= 0.94,

• PT6: # stmts •
R= 1.00,

PTT: # stmts •
R= 1.00,

PTg: # stmts •
R= 1.00,

FT9: # stmts •
R= 1.00,

PTI:# lines• Fq AND # comment/stmt• Tq,
R = 1.0,O = II,S =0.001

PT2:# struts• Fq AND # comment/strut• Tq,
R=0.94, O= 17,S =0.000

PT3:# format/strut• Lq AND # comment/shin• Tq,
R= 1.0,O= 10,S =0.001

PT4: # decisions nodes • Fq AND # call/strut • Lq,
R = 0.95, O = 21, S = 0.000

Fq AND # calls• Sq,
O= 18,S = 0.000
Fq AND # i/ostmt/stmt• Sq,
O= 13,S = 0.000
Fq AND # operand#qine• Sq,
O = 20,S = 0.000

Fq AND # operand/stmt• Sq,
O= 18,S = 0.000

Fq AND # i/ovariable/line• Fq,
O = 27,S = 0.000

PTI0: # struts• Fq AND # operators• Sq,
R= 0.91,O= II,S =0.006

PT11:# operator/strut• Lq AND # assign/strut• Lq,
R = 1.0, O = 6, S = 0.015

As shown in the above results, significant reliable patterns
can be recognized and differentiated from the non-reliable /
non-significant ones. Therefore, significant reliable
patterns can be identified and used with confidence for both

prediction and interpretation. For instance, if we take
pattern PTI for low density components, we observe a
reliabWty of 100% based on 18 occurrences. This produces
a very goodpatternsignificance.The predictionsgenerated
by this pattern can therefore be considered very reliable and
used with confidence. Both the OSR patterns and the
logistic regression model yield an average classification
correctness of 82%. This result is very encouraging
considering that the class creation process used (i.e.
dividing the range in quartiles) was primitive and that the
explanatory variables available &e all continuous (which
is an important advantage for the logistic regression
model). Moreover, note that the OSR process is entirely
automated.

The patternsproducedby OSR arenot alwayseasyto
interpret.Interpretationofpatterns(oranyotherstochastic
model)requiresexpertknowledge.However,inthenext
subsections,we providesome rulesforreadingand
interpreting the above patterns. Some pattern merging
results are also provided.

6.2 Pattern Interpretation Rules

Interpretation of patterns is much easier than interpreting
regression coefficients. First, OSR takes into account the
fact that an explanatory variable can have a strong impact
in a certain context (defined by the predicates in preceding
positions) and not be relevant in another one. Second, if
strong associations exist in a given context, then the
pattern merging process makes it apparent by creating
composite predicates (see examples in section 6.3). The
variation of reliability generated by a particular predicate
can help assess the significance of the impact of an
explanatory variable (on the dependent variable) when the
explanatory variable belongs to a certain class of values
within a certain context. Let us take the following pattern
asanexample:#struts• Lq AND #calls• Fq which
yieldsa reliabilityof 100%. However, #stmts• Lq
aloneonlyyieldsareliabilityof 88%.

This result suggests that #calls • Fq is a relevant
predicate in the context where #stmts • Lq because it
shows a significant impact on the fault density.

However, a pattern must always be interpreted in context.
In some contexts (e.g. #struts • Fq), a variable (e.g.
#operators) may not take on the full range of values. The
interpretation of patterns like pattern PT1G for high
density components must he done carefully: #operators •
Sq may be interpreted as a "rather large" number of
operators because in the context #struts • Fq, very few
components show either #operators • Tq or #operators •
Lq (i.e. # struts is strongly associated with # operators).
Therefore, the OSR process did not select patterns like
#stmts • Fq AND #operators • Tq since they yielded
subsets that met the termination criteria. This example
shows that even though interpreting patterns is always

10006788L

4-44

simple, it requires the support of a tool.

6.3 Pattern Merging Results and Interpretation

of Recognized Patterns

In this section, we intend to show how the merging

process can help to group similar raw patterns into
composite patterns and therefore provide more easily

interpretable information. If we simplify the raw patterns

generated by OSR using the merging criteria: Phi 2 = 0.40
and critical probability value of 0.0005, we get a set of
composite patterns for each of the dependent variable
classes. In order to illustrate the point, we fast show some
of the intermediate steps of the merging process. Then we

give two composite patterns: CP1 and C'_ (formed by the
merging process), which characterize low fault density

components.

For example, low density component patterns PT1 and
PT2 can be merged based on the similar classes principle.
They both show the same fast predicate: # struts e Lq.
Their second position predicate shows the same variable #
calls and two neighboring classes (Fq and So.). Since they
do not show a statistically significant difference is
distribution (critical probability value = 0.0005), then they
can be merged in: #stmts E Lq AND # calls < MEDIAN.

Similarly, low density component patterns PT3 and PT4
can be merged based on the similar predicate principle.
They both show the same fast position predicate and their

second position predicates are strongly associated (Phi 2 =

0.57). Therefore, they can be merged in: #struts E Lq
AND (#formats/slmt E Fq OR #I/O struts/strut E Fq).

This merging process is repeated until no more merging is
possible according to the user's criteria. CP1 and CP2 are
the final resulting composite patterns which characterize

low fault density components:

CPI: SIZE_HIGH AND CALLS & I/O_LOW,
R = 99% , O = 169, S = 0.000

CP2: SIZE_HIGH AND FUNCT_HIGH,
R = 86%, O = 43, S = 0.000

where the composite predicate SIZE_HIGH is defined as:

..u=;,=,.,, ,+ _ OR # ..==_.,- ,+Sq "_

SIZE_I_GH _=_ [oR # format_ E Lq OR # decision nodes ¢ Lq J|
_OR # operaton I sum ¢ Fq

and, in the context where SIZE_HIGH is true, the
following composite predicates are formed:

& 1/O_LOW t_
calh • F.qOR # _ • $q "_JORIIO ==malaam • F'qOR # fem_ats/=tmt G Fq

OR # llO,mnts • FqOR # IlO,,='a= G Sq

_ f# function= _ Tq OR # hmctons c Lq 1
FUNCT_HIGH _,OR funaiom/stmt E Tq OR functiomlstmt ¢ Lq

CP1 and CP2 actually define classes of raw patterns that
are assessed equivalent according to the user-defined
criteria. Some of the low density patterns presented in

section 6.1 belong to CPI: PTI, FI2, ZI3, PT4, PTS,
FT9, PT10, PTll, PT12, PT14, PT15, PT16, PT17 and
others to CP2: Fr7, PT13, FT18, FT19. Both of the

composite patterns suggest that large components are
likely to have low fault densities. This agrees with a study
conducted by Basili and Perricone [BPg4]. This may be

partially explained by the fact that low operator densities
seem to be strongly associated with large components.
CP1 suggests that a low number of function calls or a low
number of I/O statements increase the probability of

having a low fault density. CP2 indicates that a large
component showing a high density of functions is likely
to show a low fault density.

Merging patterns is always desirable. It allows us to

combine related, rare, isolated patterns to more significant
patterns and thereby group together trends which capture
essentially the same phenomenon. This makes the
generated composite patterns easier to interpret and gives
the user a more abstract and general view of the results.
Also, as we have seen, patterns with a small number of
occurrences cannot be trusted (even though they show
good reliabilities) because of their weak level of
significance. However, if these patterns are shown to be
strongly associated with other reliable patterns, then the

significance of the generated composite pattern increases.
This allows us to gain more trust in rare reliable patterns
based on the calculated composite pattern's level of
significance. However, this should be used very carefully
and needs further investigation.

7. Conclusion

Based on the above experimental results, building useful
models for assessing the fault density of software

components, based upon early available simple metrics in
the presence of noisy data appears possible. Whenever
OSR generates a very reliable and significant pattern, the
prediction can be used with confidence. To the contrary, if
the pattern is not a reliable and significant one, an
alternative modeling method such as logistic regression

may give a more believable prediction. We have seen that
problems such as partial information in thedataset can be
accommodated for by assigning a relative goodness to each
prediction. Also, the patterns appear to be easier to
interpret than regression coefficients and correlation

10006788L

4-45

matrices which are the usual outputs of regression

analysis. This is due mainly w the fact that OSR produces
symbolic / logical expressions where the notion of context
is introduced by considering the order of the predicates.
Also, the merging process helps the user look at the
model at various level of abstraction. From a more general

pe_pecfive, based on previous [BBT91, BP92] and current
experimental results, OSR is a data analysis framework
that successfully integrates statistical and machine learning
approaches in empirical modeling with respect to specific
software engineering needs. However, while the
experimental results thus far have been encouraging, many
aspects of the processes involved in OSR are still to be
optimized. Such processes include, by order of importance,
EV class def'mition, the refinement and automation of the

merging process, support for pattern interpretation, the
attribute selection process and the selection of termination
criteria.

8 Acknowledgments

We thank Gianluigi Caldiera, Denis Oberkampf, William
Thomas and especially Sandro Moras_ for their excellent
suggestions. We also thank the referees for their insightful
comments.

References

[AG90] Alan Agresfi, *'Categorical Data Analysis", Wiley-
interscience, 1990

[BP84] V. Basili and B.T. Perricone. "Software Errors and
Complexity: An Empirical Investigation," Communications
of the ACM. vol. 27. no. 1. January 1984.

[BR88] V. Basili and H. Rombach, _l'he TAME Project:
Towards Improvement-oriented Software Environments",
IEEE Trans. Software Engineering 14 (6).

[BS87] V. Besili and R. Selby, " Comparing the Effectiveness
of Software Testing Surategies', IEEE Trans. on Software
Engineering 13 (12).

[BR84] L. Breiman et al, "Classification and Regression
Trees", Wadworth & Brooks, 1984.

[BBT91] L. Briand. V. Basili and W. Thomas, "A Pattern
Recognition Approach to Software Engineering Data
Analysis". IEEE trans. Software Eng., Special issue on
software measurement principles, techniques and
environments, November 1992.

[BlX)2] L. Briand and A. Porter, "An Alternative Modeling
Approach for Predicting Error Profiles in Ada Systems".
European conference on quantitative evaluation of software
and systems (EUROMETRICS'92), Brussels, Belgium. April
1992.

[CA88] J. Capon. "Statistics for the Social Sciences",
Wadworth publishing company, 1988.

[CE87] J. Cendrowska, "PRISM: An Algorithm for Inducing
Modular Rules'. Journal of Man-Machine Studies, 27,
pp.349.

[DG84] W. Dillon and M. Gold.stein. "Multivariate Analysis".
John Wiley & sons, 1984.

[HL89] D. Hosmer and S. Lemeshow, "Applied Logistic
Regression'. John Wiley & sons, 1989

[M83] R. Michalski, "I'heory and Methodology of Inductive
Learning." In R. Michalski, J. Carbonell & T. Mitchell
(Eds.), Machine learning (Vol. 1). Los Altos, CA: Morgan
Kaufmmm.

[M89] J. Mingers, "An Empirical Comparison of Selection
Measures for Decision-tree Induction", Machine learning 3,
pp.319, 1989.

[Q79] J. Quinlan. "Discovering Rules by Induction from Large
Collections of Examples", In D. Michie (Ed.), Expert System
in the microelectronic age. Edinburg University Press, 1979.

[Q86] J. Quinlan, "Induction of Decision Trees", Machine
learning 1, Number 1, pp.81, 1986.

[SP88] R. Selby and A. Porter. "Learning from Examples:
Generation and Evaluation of Decision trees for Software
Resource Analysis". IEEE trans. Software Eng., 1988.

10006788L

4-46

Appendix: Definition of the Generalization
Algorithm (notation consistent with section
2.2)

This generalization process can be formalized using the
following definitions and algorithms:

• Definition AI: We define a composite predicate (cp) as

cp = U p, p ¢ PD, which the set of all predicates.

Composite predicates can be combined to form other

composite predicates. Thus, we define cpk_j = cp_ u cpj.

• Definition A2: An association coefficient a_ is an

assigned statistical degree of association between cPi and

cpj where PSS is the data set used to determine this
association. Let us assume the two following data subsets:

PSS i = (pv e PSS[cpl is true]

PSSj = {pv e PSS[cpj is true}

A two row-two column contingency table is defined,
where the subsets characterizing each row and column are

respectively PSSi, PVS - PSSi, PSSj, PVS - PSSj.
Based on this table, a Chi-Square based statistic (i.e.
Pearson's Phi) defining the degree of association between

the two subsets is calculated and assigned to a_ ss

• Definition A3: A context is a conjunction of a set of

composite predicates that defines PSS _ PVS. This
defines the data subset on which an association coefficient

is calculated and therefore its domain of validity.

• Definition A4: An association matrix AC_ is a square
matrix of association coefficients calculated in a context
C, where the rows / columns represent all possible

predicates.

x_.cz.___:A_= " _ co._= _l a_ss

where V pv _ PSS, CPk ^ cp, is true.

• Definition AS: Two composite predicates cpi and cpj are

said to be associated in the context of C if a T > some

minimal level of association.This will be denoted as

cp_ = cpj.

• Def'mition A6: A predicate tree is a tree representation of
the patterns generated during the Development
Environment Analysis (i.e. DEA) process. As mentioned
is Section 3.2, DEA produces a set of patterns

representing the observed trends in the historical data set.

It is expected that a significant number of these patterns
will be duplicated or similar. This representation is a
compact way of representing the specific pattern set
(SIS). Each path of a predicate tree represent a pattern

generated by DEA. (see Figure 3)

PATrERN SET

EV1 ¢ Clau 1 AND
EV_e Clau 1 AND
EV1 e Cius 1 AND
EV4¢ Class 1 AND

EV_E C_
EV_G C_
EV3 e Class 2
EV5 • Class2

Class 3

EV5 E Class2

Figure 3: Example Predicate Tree

Notice that the root of the predicate tree is a "dummy"
predicate which can be thought of as the identity predicate

cpI (i.e. cPi ^ cpI ¢=_ cpi). Note that in the above

example, all of the predicates are singleton. This
represents a predicate tree before any generalization.
Branches will be merged and composite predicates created
at the nodes during the generalization process.

• Definition A7: The maximum merging depth (user
defined) is the depth in the predicate tree to which

generalization is to be performed. It defines the
observation depth of the patterns by the user.

• Definition AS: Two composite predicates cpi, cpj are
said to be "merge.able neighboring composite predicates" ff
the following conditions are fulf'dled:

(1) There exist two predicates Px: Xi ¢ classik, py:

Xi ¢ Classit such that Px and py are one of the

disjunctive predicates ofcPi and cpj, respectively.

(2) Classik and Classit are neighboring classes on

variable X i range.

(3) cpi and cpj yield the same classification, show a
difference of reliability below DR and a maximum

10005788L

4-47

pattern level of significance S (i.e. DR and S are fixed
by the usex).

If these three conditions are true, then mncp(cpi, cpj, S,,

DR) is true.

In order to de/me the generalization algorithm based on the
above clef'tuitions, we assume that it starts with the
procedurecall:Generalize(predicatetree,root,cPl,0,PHI,

DR)

We can now define the Generalize algorithm as follows:

Generalize (predicate tree, node, context,
current depth, PHI, DF)

(1) If the node is a terminal node of the predicate Iree
OR if depth > maximum merging depth then

RETURN

(2) while

3 cp_, cpjsuch that nmcp (cp_, ¢Pv S. DF) do

merge(IXedicate tree, node, cpi, cpj)

(3) calculate A_ t. the association matrix with all

cpi's, i ¢ [1..... rn], in context.

(4) while 3 ¢Pi, ¢Pj such that cpi m ¢pj do

. select cPi and cpj such as ai,j is the strongest

association in A,_,

• merge(predicate tree, node, cpi, cpj)

•recalculate A_.°_xtm.l, the association matrix for

cpi cpi-1, cPi+l cpj-l, cpj+l cPm,
cpiuj in context.

(5) for each successor of node in pwAicate tree
Generalize (predicate tree, successor, context" cpnode,

depth+l, PHI, DF)

end_

In step (4), a call is made to procedure merge defined
merge as follows:

merge (predicate tree, node, cpi, cpj)

cPi and cpj are success¢_ of node

(1) Combine cpi and cpj to form a single node

cpiuj

(2) Combine all like subpaths rooted at cPiuj
end merge

100067881.

4-48

